

#### New Product Launch in Industrial Lubricants

## ColaCor 232, ColaCor 232H, & ColaLube 3449

# Steven Tang Business Manager, Industrial Lubricants & Corrosion Inhibitors

October 21, 2020















- ColaCor 232 & 232H: Amine Carboxylate Corrosion Inhibitors
- ColaLube 3449: An emulsifier & boundary Lubricant



# ColaCor 232 & ColaCor 232H



## Gap Analysis: Amine Carboxylates

#### **Current Commercial Portfolio**

Cola<sup>®</sup>Cor 200

Cola<sup>®</sup>Cor 300

Cola<sup>®</sup>Cor 400

Cola<sup>®</sup>Cor 500

Need the coverage on alkanolamine dibasic carboxylates for the market needs!



## Cola®Cor 232 & ColaCor 232H

## Chemistry

- ColaCor 232 is amine neutralized dibasic carboxylic acids (Corfree M1 type)
- ColaCor 232H is amine neutralized, mixed dibasic and mono-carboxylic acids
- Soluble in water and glycols



## General Characteristics for ColaCor 232 & ColaCor 232H

#### ColaCor 232

| PROPERTY                 | SPECIFICATION |
|--------------------------|---------------|
| APPEARANCE @25C          | CLEAR LIQUID  |
| pH (AS IS)               | 7.5 – 7.9     |
| ACID VALUE,<br>mgKOH/g   | 150 – 160     |
| ALKALI VALUE,<br>mgKOH/g | 170 – 190     |

#### ColaCor 232H

| PROPERTY              | SPECIFICATION      |
|-----------------------|--------------------|
| APPEARANCE @25C       | CLEAR AMBER LIQUID |
| pH (1% aq))           | 7.0 – 9.0          |
| ACID VALUE, mgKOH/g   | 85.0 – 100.0       |
| ALKALI VALUE, mgKOH/g | 230.0 – 250.0      |
| COLOR, GARDNER BYK    | 8 MAX              |



# Regulatory Listings

|                     | ColaCor 232 | ColaCor 232H |
|---------------------|-------------|--------------|
| USA (TSCA)          | $\sqrt{}$   | $\checkmark$ |
| Canada (DSL)        | $\sqrt{}$   | $\sqrt{}$    |
| New Zealand (NZIoC) | $\sqrt{}$   | $\sqrt{}$    |
| China (IECSC)       | $\sqrt{}$   | $\sqrt{}$    |
| Korea (ECL)         | $\sqrt{}$   | $\sqrt{}$    |



## **Shake Foam Test**

- 2 wt% solutions in South Pittsburg tap water (70-80 ppm)
- Vigorously shake for 30s
- Key Results
  - Initial foam height → foaming tendency
  - Time for foam to collapse → foam decay

|              | Liquid<br>Height (mL) | Height @ t 0 | Time to collapse (s) |
|--------------|-----------------------|--------------|----------------------|
| ColaCor 232H | 52                    | 70           | 30                   |
| ColaCor 232  | 52                    | 67           | <30                  |
| Ref 1        | 52                    | 80           | <30                  |
| Ref 2        | 52                    | 80           | 47                   |

Ref 1: Competing technology for ColaCor 232H

Ref 2: a mainstream amine carboxylate corrosion inhibitor

## Low-foaming tendency with fast decay



## Blender Foam Test (D3519)

- Foam formed under the high-shear force
- 1.0 wt% in tap water (70-80 ppm)
- ColaCor 232 and 232 H
  - On par with the ColaCor 232H industry standard (Ref 1) in foaming capability and foam decay
  - Decays faster than std technology (Ref 2)

Low foam with fast decay

|              | Rest. Hgt. (mm) | Int. Hgt. (mm) |
|--------------|-----------------|----------------|
| ColaCor 232H | 41              | 65             |
| ColaCor 232  | 41              | 58             |
| Ref 1        | 41              | 60             |
| Ref 2        | 41              | 68             |







#### Hard Water Tolerance

- Test Method
  - 2% solution in the hard water at the designed concentration of CaCl<sub>2</sub>.
  - Pass/Fail Test @ 500 ppm Hardness
    - No flakes observed after 24 hrs → Pass
    - Flakes observed in 24 hrs → Fail
  - Hard Water Tolerance Limit
    - The max conc. of CaCl<sub>2</sub> yielding no flakes in 24 hrs
- Both ColaCor 232 and ColaCor 232H pass the hard water test
- As designed ColaCor 232H shows better hard water tolerance than ColaCor 232.



Water Hardness (ppm)





### Corrosion Inhibition Performance

At 0.5 wt% in South Pittsburg Water (70-80 ppm hardness)



Highly effective for rust prevention - sufficient protection for ferrous metal at 0.5 wt%



## ColaCor 232 & ColaCor 232H

- Low-foaming and high effective corrosion inhibitor for the ferrous material protection under aqueous conditions.
- Hard water stable
- Leave no residual tacky film.



## ColaCor 232 vs. ColaCor 232H: User's Guidelines

- Interchangeable in many formulations
- But each has discrete application cases
- Different in hard water tolerance
  - ColaCor 232: 500 ppm
  - ColaCor 232H: 1000 ppm



## ColaCor 232 & ColaCor 232H: Applications

Semi-/synthetic metalworking fluids

ColaCor 232/H 20%

ColaLube 3440/

UCON™ EPML483/

ADDCO® MLB-10X 30%

TEA 10 - 20%

Water Balance

- Need to be diluted at varied concentrations per machining process
- Suitable for heavy duty cutting and grinding

Alkaline cleaners

Circulating cooling systems



## Competitive Landscape & Business Opportunities

## **Competitive Landscape**

|            | ColaCor 232                 | ColaCor 232H |
|------------|-----------------------------|--------------|
| Alox       | Aqualox 232                 | Aqualox 232H |
| ACC        | TAS COR 215A (upon salting) |              |
| PCC Chemax | MAXHIB AC-5000              |              |

## **Business Opportunities**

- Wherever the competing technology exists
- Wherever the Corfree M1 type of dibasic acid is used
  - Cathay PureMix II
  - Emerox 1199
  - Metal Chemie MC-103



## ColaCor 232 & ColaCor 232H

- Based on dibasic and mono- carboxylic acids
- Low-foaming and high effective corrosion inhibitor for the ferrous material protection under aqueous conditions.
- Hard water stable
- Leave no residual tacky film.
- Can be used alone or co-applied with other type of corrosion inhibitors.
- Suitable for metalworking and metal cleaning



# ColaLube 3449



## ColaLube 3449

- AMP-based alkanolamides
- The process improved version of ColaLube 3429
- Manufactured under the same production recipe as ColaLube 3429 and shares its specifications.
- Analytically identical to ColaLube 3429.
- More cost-effective than ColaLube 3429.

#### **SPECIFICATIONS**

| Appearance @ 25°C | Clear Liquid |
|-------------------|--------------|
| Alkali Value      | 150          |
| Acid Value        | 41.0         |
| pH (10% aqueous)  | 9.5          |
| Color, Gardner'98 | 11 Max.      |



## Ester Contents in ColaLube 3429 and ColaLube 3449

Determined by IR Analysis

%Ester

ColaLube 3429 ColaLube 3449

5.8

The improved process for ColaLube 3449 does not cause shift on the ester content

4.3



#### **Emulsification Performance Evaluation**

## High Oil Semi-Synthetic Fluids (conc.)

Ingredient % of formula

| ColaLube 3449 | 5.0   |
|---------------|-------|
| Rest          | 95.0  |
|               | 100.0 |

## **Emulsion Stability Testing**

| Duration<br>(hrs) | T (°C) | Result |
|-------------------|--------|--------|
| 24                | 50     | Pass   |
|                   | 50     | Pass   |
| 168               | 4      | Pass   |
|                   | -20    | Pass   |

Pass = No phase separation



## Other Performance Evaluation

- Good ferrous protection @ 2 wt% by CIC
- Good Four-Ball Wear (ASTM D4172B) performance in bar and chain lube



# Key Performance Attributes

|                                   | ColaLube 3449 |
|-----------------------------------|---------------|
| Foaming                           | Moderate      |
| Non-staining on Aluminum          | $\sqrt{}$     |
| Non-staining on Copper            | $\sqrt{}$     |
| Enhance Formulation Bioresistance | $\sqrt{}$     |
| Easily Waste-treatable            | $\sqrt{}$     |
| Diethanolamine-free               | $\sqrt{}$     |
| Corrosion Inhibition              | $\checkmark$  |
| Lubricity Additive                | $\sqrt{}$     |
| Detergent / Surfactant            | $\sqrt{}$     |
| Emulsification                    | $\sqrt{}$     |



## **Applications**

- MWF
  - Semisynthetic Fluids
  - Microemulsion coolants
  - Machining and grinding gray iron
  - Machining fluids for titanium alloys
- Alkaline metal cleaners
- Bar and chain oil
- Generator or hydraulic lubricant

Suggested Formula for Chain Lube

| - ColaLube 3449                       | 28.0% |
|---------------------------------------|-------|
| - Propylene Glycol                    | 10.0% |
| <ul> <li>Isopropyl Alcohol</li> </ul> | 4.8%  |
| - EDTA                                | 4.8%  |
| - Water                               | 52.4% |

100%

Recommended dilution: 0.5 – 2.0 wt% in water



### ColaLube 3449

- Presents comprehensive performance profile
  - Emulsification
  - Lubricity
  - Corrosion protection
  - Bioresistance
  - Detergency
- Colonial's current go-to option for alkanolamide-based emulsifier and boundary lubricants
- Enables biocide-free metalworking fluid formulation
- Used in the metalworking fluids for the machining processes for certain specialty high-strength alloys.

## **Thank You!**

# colonialchem.com

Welcome any comments on any additional data to generate!!!

Steven Tang: <a href="mailto:steven.tang@colonialchem.com">steven.tang@colonialchem.com</a>











